@

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A267 434 DTIC
LSRRI .

THESIS

AN APPROXIMATION FOR COMPUTING REDUCTION IN
BANDWIDTH REQUIREMENTS USING INTELLIGENT
MULTIPLEXERS
by
Lesley Jeanne Painchaud Henson

March 1993

Thesis Co- Advisors: Patricia A. Jacobs
Donald P. Gaver

Approved for public release; distribution is unlimited

93-17348 e
WAL Sl

g

mn 2y




THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




UNCLASSIFIED
REPORT DOCUMENTATION PAGE Fom Approved
I 72 REPORT SECURITY CLASSIFICATION ) GS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTRORITY 3

Approved for public release; distribution is
. DECLASSIFICATIOR/DOWRGRADING SCREDULE unlimited.

[ PERFORMING ORGANIZATION REPORT NOMBER(S) | % MONITORING ORGANIZATION REPORT NUMBER(S]

T2 NAME OF PERFORMING ORGANIZATIONT 86, OFFICE SYMBOL | 72
(It applicable) Naval Postgraduat i
Naval Postgraduate School OR aval Postgraduate Schoo
3 fe. and 2P Code) ) , Stale, and ZIF Code)
Monterey, CA 93943 Monterey, CA 93943-5006
3a  NAME OF F;EJND!NG7SPUNSUHING [Bb. OFFICE SYMBOL | 2. PHUCUH‘EE‘ENT TNSTRUMERT IDENTIFICATION RUMEER. |
ORGANIZATION (If apphicable)
Naval Postgraduate School
[BC. ADDRESS (Lily, Sial, and 2P Code) . SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK AK UNIT
Monterey, CA 93943 ELEMENT NO. |NO. NO. ACCESSION NO.

[T TITCE {Include Secunty Classification)

An Approximation for Computing Reduction in Bandwidth Requirements using Intelligent Multiplexers

12 PERSONAL AUTHOH(S)

Lesley J. Henson
T3a. 1 YPE OF REFORT T3b. TIME COVERED | 14. DATE OF REPORT (Vear, month day] | 15 PAGE COUNT |

Master’s thesis FROM TO___ March, 1993 85
NTARY NOTATIO

The views expressed in this paper are those of the author and do not reflect the official policy or position of the
Depanmem of Defense or the U.S. Government.

COGATT CODES 8. SUBJECT TERMS (Conlpue on reverse iT necessary and identiy by E/ock number)
FIELD GROUP SUB-GROUP__ | Telecommunications; model; stochastic telecommunications model

19 ABSTRACT (Continue on reverse if necassary and identify by block number)

This paper stochastically models a single-node telecommunications system both with and without the use of
inelligent multiplexing. Intelligent multiplexers take advantage of the idle periods or silences that occur during the
course of speech transmissions to merge (or multiplex) packetized talkspurts from more than one source onto a
single channel. This allows for a more efficient use of available bandwidth, thereby reducing the amount of
bandwidth required to carry a particular traffic load. Digitizing speech into packets of equal size also allows for
compression, further reducing bandwidth needs. By comparing the models for systems both with and without
multiplexing, we are able to determine the reduction in bandwidth which may be expected for a particular grade of
service (measured by blocking probabilities). A bivariate continuous time Markov chain model for a multiplexer
1s presented. An approximation is introduced to calculate limiting blocking probabilities much more quickly and
for larger systems than is possible by solving a set of linear equations for the bivariate model. The accuracy of the
approximation is explored through comparison with the bivariate model; the approximation provides a somewhat
conservative estimate of blocking, but is close enough to be used as a tool for the range of relevant values. The
approximation is then used to compare blocking probabilities for three different levels of speech activity. Results
are shown in tabular form.

I3 OISTRBUTION/AVATCABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSICIATION
[J UNCLASSIFIEDUNLIMITED  [] saMEASRPT. []oTicusers|  UNCLASSIFIED
7235, TELEPRONE (Inck/ide Area Code)] | 2¢. OFFICE SYMBOL |
P. Jacobs (408) 646-2258 OR/Jc
DD Form 1473, JUN 86 Previous editons are obsolétse. SECURITY CLASSIFICATION OF THIS PAGE
S/N 0102-LF-014-6603 UNCLASSIFIED




Approved for public release; distribution is unlimited

An Approximation for Computing Reduction in Bandwidth Requirements
using Intelligent Multiplexers

by

Lesley Jeanne Painchaud Henson
Lieutenant Commander, United States Navy
BA, University of South Florida, 1978
MA, University of Oklahoma, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

From the

NAVAL POSTGRADUATE SCHOOL
March 1993

—_—~ 7

| o)
/
” 1 7ians /4.;/;1«,4 T e e
v
ley Jeanne Painchaud Henson

Approved by: p f-ﬁ-—% AQ@U{J

Patricia A. ]acoés,T Thesis Advisor

Author:

L

“~ Donald P. Gaver, Thesis Co-Advisor -

Barbara Marsh-Jones, Second Reader

S

Peter Purdue, Chairman
Department of Operations Research

ii




ABSTRACT

This paper stochastically models a single-node telecommunications
system both with and without the use of intelligent multiplexing. Intelligent
multiplexers take advantage of the idle periods or silences that occur during
the course of speech transmissions to merge (or multiplex) packetized
talkspurts from more than one source onto a single channel. This allows for a
more efficient use of available bandwidth, thereby reducing the amount of
bandwidth required to carry a particular traffic load. Digitizing speech into
packets of equal size also allows for compression, further reducing bandwidth
needs. By comparing the models for systems both with and without
multiplexing, we are able to determine the reduction in bandwidth which
may be expected for a particular grade of service {measured by blocking
probabilities). A bi\;ariate continuous time Markov chain model for a
multiplexer is presented. An approximation is introduced to calculate
limiting blocking probabilities much more quickly anu for larger systems than
is possible bv solving a set of linear equations for the bivariate model. The
accuracy of the approximation is explored through comparison with the
bivariate model; the approximation provides a somewhat conservative
estimate of blocking, but is close enough to be used as a tool for the range of
relevant values. The approximation is then used to compare blocking
probabilities for three different levels of speech activity. Results are shown in

tabular form.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this
research may not have been exercised for all cases of interest. While every
effort has been made, within the time available, to ensure that the programs
are free of computational and logic errors, they cannot be considered
validated. Any application of these programs without additional verification

is at the risk of the user.
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L INTRODUCTION

The field of telecommunications has been advancing at a tremendous
rate in recent years, assisted by the decreasing costs and increasing capability of
microprocessors, as well as by deregulation of the industry. New products
and capabilities are coming online at an astounding rate. It has become
commonplace to transport data between computers with the use of modems
along standard telephone lines at ever-increasing baud rates. More
companies every day are opting to use video-conferencing as a replacement
for time-consuming travel to business meetings. Fax machines are now
priced for use in the home as well as in the office. Cellular phones for use in
automobiles and airplanes make "getting away from it all" more difficult
than ever. The latest sensation to hit the consumer market is a telephone
with video screen to view the person on the other end of the phone line (if
they have the same device, of course), also priced for home use. There seems
to be no limit to the potential market for increasingly sophisticated (i.e.
bandwidth intensive) telecommunications products.

In order to provide economical transmission of high bandwidth data,
such as fax and video, it has become increasingly important to find
inexpensive ways to increase bzndwidth and to conserve the bandwidth
available. A variety of technical innovations, such as fiber optic networks,
data compression techniques, and multiplexers, have been developed to do

just that.




A. WHAT IS MULTIPLEXING?

Multiplexing techniques are designed to reduce bandwidth needs, thereby
reducing costs, by sharing bandwidth among network users. Intelligent
multiplexers accomplish this by sending the packetized information from a
large number of channels onto a single wideband channel, without
transmitting any of the silent periods. This achieves very high utilization
rates along the single channel.

Intelligent multiplexers take advantage of the idle times that occur during
the course of any telecommunications transmission to make more efficient
use of available bandwidth. Speech conversations, for instance, are silent
about 60% of the time; when one person is speaking, the other is normally
silent and listens. Also, there are pauses between words and sentences. Data
traffic often averages only 5-15% efficiency, tending to be bursty, occurring for
a short time, then subsiding to occur some undetermined time later. These
bursts of data traffic also have high bandwidth requirements.

There are two basic types of intelligent multiplexer on the market. The
older of the two is referred to as statistical time-division multiplexing (STDM)
or statistical packet multiplexing (SPM); the newer is called fast packet
multiplexing (FPM). They are both microprocessor-based, meaning both
higher efficiency and higher cost when compared with frequency division
multiplexing and time division multiplexing. These newer technologies will
consequently only begin to replace what is 2lready in use as microprocessor

price/performance ratios improve enough to justify the efficiency gains.




B. STANDARDS

Due to the current lack of standards for intelligent multiplexing
equipment, manufac*urers have each designed their own intermachine
communication systems, and no two systems are compatible. This creates
problems when users of private networks want to tap into another private or
put.ic network. It can also make direct comparisons among various vendor
products difficult for the potential buyer.

Standards bodies, such as the American National Standards Institute
(ANSI), the International Telegraph and Telephone Consultative Committee
(CCITT), and the Institute of Electrical and Electronic Engineers (IEEE), are
working on standards for equipment which will likely supersede current
multiplexer technology. Standards seem to be evolving in the direction of
transmitting all information (speech, data, video, etc.) in the form of packets

or "cells."

C. DEFENSE COMMUNICATIONS AGENCY INTEREST

The Defense Communications Agency (DCA) is extremely interested in
exploring the capabilities of these new and emerging technologies in order to
plan ahead for changes to MILDEP networks. Studies are ongoing to assess the
various intelligent or "smart” multiplexer products on the market and to
determine criteria on which to base future purchasing decisions [Ref. 1: pp.
1-23 ).

In the Advanced Design Group, headed by Dr. Martin Fischer, the
inclusion of intelligent multiplexers (smart mux or smux) will affect the
network topology design tools currently being developed. The key question

for them, regarding the smart mux, is how much of a reduction in bandwidth




can be obtained by the use of intelligent multiplexers while maintaining
current network performance levels. Their data base contains bandwidth
costs based on AT&T tariffs as well as the cost data for several different brands
of multiplexer. They also know how many channels are required to carry a
particular traffic load, expressed in Erlangs, without the use of a smart
multiplexer. A simple way to calculate the reduction in channels needed
when multiplexers are added to the network would allow them to do

comparative cost analyses.

D. PURPOSE OF THIS STUDY

The purpose of this study is to find a simple, yet relatively a-curate, way
to determine the reduction in bandwidth which will result from adding
intelligent multiplexers to a voice network. It will involve stochastically
modeling a single node of a communications network, both with and
without a multiplexer. Approximations to the more complicated stochastic
model are then studied.

In the next section we provided a summary of the technology. In Section
III we review some of the relevant literature. Section IV presents a
description of the models studied, while Section V covers the approximation
techniques used to compute limiting probabilities for those models. In
Section VI we describe the programs used to perform the calculations and the
validation techniques for the computer code. In Sections VII and VIII we

discuss the numerical results and conclusions, respectively.




I1. DESCRIPTION OF THE TECHNOLOGY

A. FREQUENCY DIVISION MULTIPLEXING

The oldest multiplexing technique is frequency division multiplexing
(FDM). FDM divides the frequency spectrum of analog circuits into smaller
narrowband segments. The narrowband implementation limits the data rates

which can be used for remote networking [Ref. 2: p. 54].

B. TIME DIVISION MULTIPLEXING

Time division multiplexing (TDM), which began to replace FDM when
remote network data rates increased above 2400 bits per second (bps), divides
the communication link into a fived number of time slots. Each slot is
assigned to a specific channel. Transmission occurs in a regular sequence,
cycling through the channels. Bandwidth allocation is fixed, and is based on
the size of the time slot allocated .to each channel. TDM is relatively
inexpensive to implement and introduces very little delay. However, TDM is
not very efficient in the use of bandwidth. If a channel is idle, that time slot is
not available for use by any other channel. Also, the silent periods of a voice
or data transmiss.on go unused. For combined voice and data traffic, TDM
averages only 10-25% efficiency. TDM is unable to momentarily increase
bandwidth for high-speed data due to the fixed time slots and bit rates. Thus,
TDM is not well-suited to transporting a dynamically varying combination of

voice, fax, and LAN traffic [Ref. 2: p. 54].




C. STATISTICAL PACKET MULTIPLEXING

Statistical packet multiplexing solves both of the problems associated with
TDM, that is, network efficiency and ability to dynamically allocate
bandwidth, but has two drawbacks of its own. It introduces higher network
delay and difficulty in predicting the amount of delay. Thus, SPM is not
suited for time-sensitive information, such as voice and video traffic.

Instead of statically dividing the network bandwidth as in TDM, SPM
dynamically allocates bandwidth to those channels passing data at the
moment. Within the multiplexer (mux), SPM operates by gathering
transmitted data from the active channel into a packet, appending identifying
and control information, and passing the packet to the next multiplexer. The
next mux checks for transmission errors (using the control information) and
requests retransmission if errors are found. Any errors are corrected before
the packet is sent on. The packetization of data also allows the originating
multiplexer to easily perform various operations on the data, such as
encryption and compression.

Due to the different advantages and disadvantages associated with both
TDM and SPM, many networks in use today are hybrids that combine the
two. TDM is used for time-sensitive information (voice, video, some
synchronous data and LAN traffic) while SPM is used where higher network
efficiency and dynamic bandwidth allocation are important (primarily
asynchronous data, and some synchronous data and LAN traffic) [Ref. 2: p.55].

Descriptions of the first three multiplexing techniques may be found in

references [Ref. 2: pp. 54-55, Ref. 3: pp. 112-113, and Ref. 4: pp. 165-188].




D. FAST PACKET MULTIPLEXING
Fast packet multiplexing (FPM) is a generic term for remote networking

techniques that satisfy the following criteria [Ref. 2:p. 54]:

* the ability to transport a dynamically varying combination of voice, fax,
video, synchronous data, asynchronous data, and LAN (local area
network) traffic;

* high network efficiency, typically 90% or better;
* low network delay;
e predictable delivery of time-sensitive information.

Fast packet multiplexing is the most recent of four main multiplexing
techniques designed for use in telecommunications networks. It is very
similar to statistical packet multiplexing. As with previous multiplexing
techniques, it is a way to reduce bandwidth needs by sharing bandwidth
among network users, thereby reducing costs.

Unlike the other multiplexing techniques, it is designed to efficiently
transmit a wide var-iety of time-sensitive information along the same
network.

FPM has the following characteristics [Ref. 2:pp. 56-59]:

* it gathers each incoming channel's data into equal size cells (packets)
for delivery over the network;

* it begins to forward cells of a message before all cells are completely
received; i.e. cells pass through the FPM device rather than into and
then out of the device;

* it can interrupt the delivery of one channel's message in favor of
delivering a more time-sensitive (i.e. higher priority) channel’s
message (using cell boundaries to determine where interruptions may
occur);

* the time it takes to transmit a cell is directly related to both the cell size
and the bit rate of the network (outgoing) link; low rates and large cell
size increase transmission time. The cell size is fixed by making it




proportional to the bit rate of the network link. Since cell sizes and bit
rates of the links are fixed, service times for each cell are equal;

it eliminates idle bandwidth from the incoming channels and
transmits only active information, so more calls can be in progress
than the number of physical channels available.




III. LITERATURE REVIEW

A. QUEUEING THEORY
1. The Erlang B (Loss) Formula

Voice communication systems using time-division multiplexing are
often modeled stochastically as queueing models, using the Erlang loss system
[Ref. 5:pp. 79-81]. Here, it is assumed that calls are initiated according to a
Poisson process with rate A, service times are exponentially distributed with
mean iength p~1, independent of each other and the arrival process; and if all
servers (channels) are busy when a customer (caller) arrives, that customer
cannot enter the system (gets a busy signal); that is, blocked customers are
cleared (BCC). The ratio A/u is the offered load a, expressed in Erlangs. For a
given number of channels ¢, the limiting probability of j busy channels is

given by the truncated Poisson distribution:

(Afn)

i1
limP ()= P =—L— (=01,.0) (1)

= AMu
2;) ( k!)

This formulation is also found in Ross [Ref. 6:p. 390].
The proportion of time that all ¢ channels are busy is calculated by

the Erlang B formula (or Erlang loss formula)

a‘/c!
ia"/k!

k=0 where a = A/,

B(c,a)=




This formula is used to determine the number of channels ¢ needed
to achieve a particular blocking probability B(c,a ), given the offered load a in
Erlangs. By plotting the Erlang loss formula B(c,a ) against increasing values
of a, curves for fixed values of ¢ are obtained [Ref. 5:pp. 316-317]. Tables of
these values have also been created. The carried load a' is also easily

calculated:
a=all-Bca)l (3)

This is part of the method currently in use at DCA to determine the number
of channels required along any particular trunk in the network modeling

process for a given load.

B. MULTIPLEXER MODELS

Numerous models for various types of multiplexer have been developed.
Similar models are used to analyze both computer and communication
networks. A data-handling computer network is modeled by Anick, Mitra,
and Sondhi [Ref. 7:pp. 1871-1894] using differential equations to describe the
equilibrium buffer distribution. The model is used to determine the
appropriate buffer size for a particular number of sources and grade of service.
It is also used to determine the maximum number of sources to be allowed in
the system. Integrated voice-data multiplexers are modeled in references [Ref.
8:pp- 8-14, Ref. 9:pp. 1124-1132, Ref. 10:pp. 833-846, and Ref. 11:pp. 1003-1009).
The first reference [Ref. 8:pp. 8-14] uses a continous-time queueing model
which models performance of a flow control scheme for a movable boundary
voice-data multiplexer and develops a decision rule based on data queue

length to cutoff the priority of voice. Reference [Ref. 9:pp. 1124-1132] compares

10




two different voice-data multiplexer schemes, both of which use the movable
boundary frame allocation scheme. The second scheme uses speech activity
detectors (SAD's) so that the multiplexer also performs digital speech
interpolation. This allows utilization of talker silences for transmission of
additional voice and/or data. Performance measures include: probability of
loss for voice calls, probability of speech clipping, speech packet rejection ratio,
and expected message delay. The third reference [Ref. 10:pp. 833-846] uses the
index of dispersion for intervals (IDI) as a measurement tool to characterize
the complex arrival process resulting from superposition of separate voice
streams. The paper also describes delays experienced by voice and data packets
using a two-parameter approximation. The fourth reference [Ref. 11:pp. 1003-
1009] models wideband packet technology integrating packetized voice and
data using statistical multiplexing. It incorporates a flexible bandwidth
allocation scheme with bit dropping; results using simulation show good
voice quality, low delay and packet loss, efficient use of transmission
bandwidth, and protection in overload. References [Ref. 12:pp. 847-855, Ref.
13:pp. 41-56, Ref. 14:pp. 703-712, and Ref. 15:pp. 718-728] all model packet voice
multiplexers. Reference [Ref. 12:pp. 847-855] describes three models; a semi-
Markov process, a continuous-time Markov chain, and a uniform arrival and
service model; then compares numerical results of the queueing behavior of
the three models to each other and to a discrete-event simulation and an
M/D/1 analysis. All models assume multiple independent voice sources
which form a queue for first-in-first-out (FIFO) service along a finite-capacity
communications link. The second reference [Ref. 13:pp. 41-36] develops

methodologies for evaluating the performance of variable bit rate voice

11




under the following two conditions: (1) at a fixed load when instantaneous
fluctuations occur due to talker activity/inactivity and (2) under variable load
when variations occur due to call on/off. The authors use a Markov chain
model in conjunction with a software package to emulate packetized voice
and describe the probabilistic bit-dropping pattern under various loading and
traffic conditions. The third reference [Ref. 14:pp. 703-712] uses simulation and
analytic modeling (M/D/1/K) to examine performance of a packet voice
multiplexer queue which employs bit dropping during periods of congestion.
Results indicate that significant capacity and performance advantages are
gained in the multiplexer as a result of dropping the least significant bits
when the system is congested. The fourth reference [Ref. 15:pp. 718-728] also
uses an M/D/1/K queueing model for measuring performance of a voice
packet network which uses bit dropping.

For purposes of this paper we have chosen a model which allows no
queue to develop (blocked customers are cleared). Rather, we focus on the
proportion of time that blocking occurs. That is, we assume that voice calls
are so time-sensitive that no waiting time can be tolerated, so they are
dropped (denied transmission) to avoid congestion. This is not a completely
accurate description of what occurs in the multiplexer, however, we hope that

it provides an adequate, albeit conservative approach.

12




IV. MODEL DEVELOPMENT

A. THE ERLANG MODEL

The first step toward developing the multiplexer model is to enhance the
Erlang model with the addition of talkspurts. This will be used as a basis for
the multiplexer model and also as a comparison model by which to measure
the relative performance increase once a multiplexer is added.

1. Variables

In what follows, the following variables were used:
C(t) is used to represent the number of calls in progress at time t.
A(t) is used to represent the number of talkspurts (active calls) at time t.

K is the maximum number of calls allowed (= the number of channels).
Lambda (1) is the call initiation rate (in call initiations per second).

Mu (u) is the call termination rate (in call terminations per second).

p-1 is the mean time (in seconds) that a call is in progress.

Alpha (a) is the talkspurt initiation rate (in initiations per second).

Beta () is the talkspurt termination rate (in terminations per second).
a1 is the mean length of a silent period (in seconds).

-1 is the mean time (in seconds) of talkspurt duration.

o/(a + B) is the proportion of time that a call in progress of infinite duration
is active.

B/(a + B) is the proportion of time that a call in progress of infinite duration
1s silent.

13




2, Model Assumptions

It is assumed that calls are initiated in accordance with a Poisson
process with mean rate A. The length of a call in progress is exponential with
mean p-1. Blocked calls (customers) are cleared; that is, new calls are
prevented from initiation if all available channels are in use. Let {C(t); t 2 0}
be the number of calls in progress at time t.

Calls in progress alternate between active and inactive states as
talkspurts are initiated and terminated. We model this process as an
alternating renewal process where the length of the talkspurt is exponential
with mean B-1 and the length of a silent period is exponential with mean a-1.
Let {A(t); t 2 0} be the number of calls in progress that are active at time t.
Note that A(t) < C(t).

It is also assumed that when a new call is initiated, it is immediately
active; that is, a talkspurt is simultaneously initiated.  When a call terminates,
it may do so from either an active or inactive state.

3. Description

The model is a two-dimensional birth-and-death queueing model. It
maintains the Markov property inherent in one-dimensional birth-and-death
queueing systems, i.e the system occupies "states,” and the rates at which
changes of state occur depend only on the instantaneous state of the system
and not on the past history of the process. However, two variables are
required to define the state space. The bivariate process {(C(t), A(t)); t 2 0} is a

continuous time Markov chain with the following:

14




P{C(1+h)=c, A(t+h)=a | C()=k, A(1)=j}

= [Ah + o(h)] I(j S k) I(k < K) if  c=k+1, a=j+l,
= [(k—j)ah + o(h)] I(j < k) if c=k, a=j+1,
= [jBh + o(h)] I < k) I(j > 0) if c=k. a=j-1,
= [ujh + o(M] Ik > 0) I > 0) I k) if c=k~-1, a=j-1,
= [M(k-jh + o(h)] I(§ > 0) I < k) if c=k, a=j-1,
=0 otherwise,
lifx<y
where [(x < y)= {O ifx>y

A rate diagram for this model, where the maximum number of
available channels is three, is shown below in Figure 1; see [Ref. 6:p. 360] for

discussion of transition rate diagrams.
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Figure 1. Graphical Representation of Three-Channel Bivariate Erlang
System
Conservation-of-flow ("rate out = rate in") equations may be used to
describe the system in equilibrium [Ref. 5:pp. 3-4]. We let the lim:,P{C(t) = k,
A(t) = j} = TI{k,j}, where (k=0,1,..., K) and (j=0,1,...,k) represent the limiting
distribution. The conservation-of-flow equations, which equate the rate the
system leaves each state to the rate at which it enters that state, are shown

below for a system with three available channels:
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MT{0,0} = WII{1,0} +uI1{1,1},

(o + A+ wI1{1,0} BII{1,1} + 2ul1{2,0} + uI1{2,1},

B+ A+ wI{1.1}

AIT{0,0} + al1{1,0} + uI1{2,1} + 2ul1{2,2},

Qa + A + 2I1{2,0}

BII{2,1} + 3ul1{3,0} + uI1{3,1},

(a+B+A+2WI{2,1}

ATI{1,0} + 2al1{2,0} + 2BT1{2.2} +2ul1{3,1} + 2uI1{3.2},

@1+ A+ 20)11{2,2}

[}

ATI{1,1} + al1{2,1} + pI1{3,2} + 3ul1{3,3},

(3o + 3W)I1{3,0} Bri{3.i}.

(20 + B + 3w)I{3,1} AT1{2,0} + 3al1{3,0} + 2BI1{3,2},

1]

(a+ 2B + 3u)IT{3,2}

AMI{2.1} + 2al1{3,1} + 3PBM{3,3},

(3B + 3WIT{3.3}

AI1{2.2} + of1{3.2}.

The sum of the terms on the left-hand side (rates out) is equal to the sum of
the terms on the right-hand side (rates in). Any one of these equations is,
thus, redundant and may be ignored. The remaining equations, along with
the normalization equation

k

3
¥ Y ik, j} =1,
k=0j=0

uniquely determine the limiting probabilities.
4. Parameter Values
If the average length of a phone call (u-1) is taken to be 180 seconds
(three minutes), then p = 1+180. The length of a talkspurt (B-1) must be
shorter than the length of a phone call for the model to be reasonable. We
also want to maintain the proper proportion between the length of talkspurts

and silent periods. Speech activity ranges from 28% to 42% depending on
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cultural and language characteristics of the user population [Ref. 16:p. 1]. If
voice conversations are assumed silent 60% of the time, then we need to
have B+(a+p) = 0.60. The input value for A is treated as variable; increasing
the value of A corresponds to an increasing load on the system, where load is
defined to be A+y. Increasing the load increases the blocking probability. The
maximum number of channels is also treated as variable. Increasing the

number of channels decreases the blocking probability.

B. THE MULTIPLEXER MODEL

The multiplexer model begins with the Erlang model as described above,
then adds the three main features which are characteristic of how a
multiplexer functions. The first and most important distinguishing
characteristic of the multiplexer is that it allows more calls in progress than
the actual physical number of channels. This is accomplished by taking
advantage of the silent periods in each conversation to merge together
packetized talkspurts from multiple conversations. Secondly, it compresses
the packetized talkspurt to a fraction of its original length. Third, and lastly, it
appends header information to each packet, to allow the talkspurt to be
recreated at the destination node. See [Ref. 17:p. 430] for additional discussion
of the information contained in the packet header.

1. Variables

The following are additional variables that appear in the multiplexer

model. A new variable (J) is added, and the value of K is redefined. Also, f-!

is replaced by (B~1)", and service rate (s) is added.

J is the maximum number of talkspurts allowed (equal to the number of
physical channels).
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K is the maximum number of calls allowed to be in progress (may be
several times greater than J).

(B-1)" is the new mean talkspurt length in units of bits per talkspurt after
compression and addition of packet headers.

b is the number of bits per second produced by the coding scheme.

s, the service rate in bits per second, is simply the outgoing channel rate (of
the wideband channel).

B’s is the new departure or service rate of talkspurts (in talkspurts per
second), where B is the inverse of (B-1)".

2. Additional Model Assumptions for the Multiplexer Model
Although more calls than channels are allowed, new calls are blocked
when 'the number of active calls in progress (talkspurts) equals the number of
available channels. Voice packets belonging to a call in progress are also
blocked (lost or "clipped"”) when the number of active calls in progress equals
the number of available channels.
3. Description
In the multiplexer, all talkspurts from all incoming channels flow
through a buffer, where they are "packetized" and sent forward along a single
wideband channel. The multiplexer divides talkspurts into fixed size packets
and attaches certain header information that allows the talkspurt to be
reconstructed at the destination node by a demultiplexer. The multiplexer can
also compress the packetized information so that it uses fewer bits, thus
occupying less space as it moves through the channel. Typical compression
schemes use either a 2-to-1 or 4-to-1 rate of compression.
The intelligent multiplexer model is also 1 bivariate process

{(C(t), A(t)); t 2 0} and a continuous-time Markov chair - ::n the following:
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P{C(t+h)=c, A(t+h)=a | C()=k, A(t)=j}

= [Ah +o(h)] IG < 1) Itk < K) if  c=k+l, a=sj+l,
= [(k-j)ah + o(M)] IG < N I(j <k £ K) if c=k, a=j+1,
=(jB*s)h +oh)] 10<j< N Ik <K) < k) if c=k, a=j-1,
={ph+oM]Ik>0)10<j<k<K)IG<]) if c=k-1, a=j-1,
=[uk-ph+om)]) 10 <j<NIj<k <K) if c=k, a=j-1,
=0 otherwise,

lifx<y

where 1(x<y)={0 x>y

A rate diagram for the multiplexer model, where the maximum
number of available channels is three, is shown below in Figure 2; see [Ref.
6:p. 360] for discussion of transition rate diagrams.

In the multiplexer model, there can be two types of blocking. Outside
calls can be blocked from initiation (external blocking) and calls in progress
can be blocked from transmitting a talkspurt (internal blocking). Both kinds of

blocking occur when the number of talkspurts (active calls) is at the line
capacity

lim P{A(t) = J} = 3 limP{C(r) = k, A(r) = J).
[ kg i—de

The blocking of calls from initiation also occurs when the number of calls in
progress is at the maximum allowed (C(t)=K). The proportion of time this
occurs is given by
J
lim P{C(s) = K} = Z}in_lp{co) = K. A(1) = j}.

j=0

In comparison, blocking in the Erlang model occurs only when the

number of calls in progress equals the number of physical channels. There is
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Figure 2. Graphical Representation of Three-Channel Smart Mux Model
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no internal blocking. Note that under reasonable loading it is possible for A(t)
< J £ C(t) £ K, where | is the maximum number of active calls that the
transmission line can support and K is the maximum number of calls
allowed in the system. For purposes of this paper, we will refer to the external
blocking that occurs when C(t)=K as outer blocking. The internal and external
blocking that occurs when A(t)=] will be called inner blocking. By adding the
two together and subtracting out the joint limiting probability that {C(t)=K,
A(t)=]}, we get the total probability of blocking.

D. PARAMETER VALUES

The value for length of talkspurts (1) in the Erlang model changes in
the multiplexer case to account for both compression of the packetized
talkspurt and for header information appended to each packet. Packet lengths
are expressed in terms of bits rather than time, but can be converted to units
of time if given the line rate of the transmission medium in terms of bits per
second (bps). The voice packet size depends on the coding scheme used. For 32
Kbps, ADPCM coding, and a packetization period of T=16 milliseconds (ms),
the packet size is 512 bits or 64 bytes (there are 8 bits per byte), plus a header
[Ref. 16:p. 1]. A talkspurt of 352 ms is divided into 352+16 = 22 packets and
contains a total of 11264 bits (1408 bytes). Each packet is then compressed. A
compression factor of four reduces each packet to 128 bits. Appending a packet
header of 10 bytes to each compressed packet increases the length to 208 bits
(26 bytes). Thus the number of bits in a talkspurt of 352 ms is 4576 after
compression and addition of headers. This compression and addition of

packet headers to alter the original mean talkspurt length, B-! (in units of
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seconds), results in the new mean talkspurt length in units of bits, (B-1)",

defined in the multiplexer model as follows:

(B~1)" = B-1x T-1 x (# bits/packet) x ((1+ compress) + header proportion)

= B~1 x b x ((1+ compress) + header proportion)
= number of bits per average talkspurt,

where b, the number of bits per second produced by the coding scheme, is
equivalent to the number of bits per packet (e.g. 512) divided by the
packetization period T (e.g. 16 ms per packet). Also note that B-1 x T-1 is equal
to the mean number of packets in a talkspurt.

Compress is set equal to four (4) to indicate a 4-to-1 compression of data by
the multiplexer. Packet header information is assumed to be 10 bytes (attached
to a 64 byte packet), [Ref. 16}, for a header proportion of 10+64 = .15625.

In addition, the service rate of the outgoing channel is now many times
larger than any of the incoming channels. The Defense Communications
Agency commonly uses T1 lines, which carry 1.544 Mbps (1.536 Mbps after
accounting for the signalling channel). The T1 lines may be divided into
1.536 Mbps+32 Kbps = 48 separate channels. Therefore the outgoing T1 rate is
48 times larger than the rate of the encoding scheme. A talkspurt of 352 ms
(without compression and addition of packet header) will take 11264
bits+1.536 Mbps = 0.073 ms to transmit on a T1 line.

In this multiplexer model, however, we do not necessarily want to
assume full T1 rates for the outgoing channel. Rather, we need to be able to
look at fractional T1 rates for lighter traffic loads, so we assume that the

outgoing rate is equal to 32 Kbps multiplied by the maximum number of
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active calls allowed (labeled ] in the multiplexer model described above;
labeled A in the computer code). The incoming channel rate is set equal to b =
32 Kbps. The ratio of the outgoing channel rate to the rate of an active
incoming channel is set equal to J. In the multiplexer model, J x b is defined
as the service rate, s. The termination rate for talkspurts in the multiplexer

model is given by B’s.
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V. APPROXIMATIONS

A. THE ERLANG MODEL APPROXIMATION

As noted earlier, the truncated Poisson formula is used to calculate the
limiting probabilities for an Erlang loss system with maximum K channels
and input parameters A and W; that is, a model for the calls in progress
{C(t); t2 0} is a continuous time Markov chain with transition rate diagram

shown in Figure 3 [Ref. 6:p. 360].

Figure 3. Transition Rate Diagram for Calls in Progress

To deal with the bivariate Erlang system, we need to consider the two
additional parameters (a and ) which describe talkspurt initiation and
termination. Fix the number of calls in progress equal to k < K. A model for
the number of active calls in progress is a continuous time Markov chain
with the rate diagram shown in Figure 4. Since the calls in progress are
independent of each other, the limiting distribution of having j active calls is

described by the binomial distribution;

k ] k=g
,11.".3 P{A(t) = jlk calls in progress} =(an(:ﬂ) [afﬂ) ) 4)
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Figure 4. Transition Rate Diagram for Active Calls in Progress

Limiting probabilities for the bivariate Erlang system can be approximated by

combining the truncated Poisson distribution (1) with the binomial;
: . k! kY « B )
limP{A(t) = j,C(t) =k} = ,
e {an=J.cn=k}= 2":(2. a+f)la+p

1=0

where (k =0,1,...., K) and (j=0,1,...., k).

B. THE MULTIPLEXER MODEL APPROXIMATION

For the multiplexer model, the binomial probability of having j
talkspurts, given k calls in progress, must be adjusted to reflect the new
restriction that the number of talkspurts cannot exceed the number of
physical channels ], and that ] may be less than k. The following form of the
truncated binomial [Ref. 5:p. 109] was used rather than the binomial

distribution used in the Erlang model.

k
P,(k) = lim P{A(t) = jlk calls always in progress} = (j

kY o Y -
where fy(6) = Z(J'Iﬂ*s)
=0

7
ad ) P,(k),

B*s ©6)
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for j <k, where (k =0, 1,..., K) and (j= 0, 1,...., ]).

The truncated Poisson distribution (1) is still used to find the probability
of k calls in progress (k=0,1... K), but now it yields an approximate rather than
an actual limiting probability, since it fails to account for the additional
internal blocking in the multiplexer model. Thus, the truncated Poisson
yields a conservative estimate of the external blocking that occurs when the
maximum allowed number of calls are in progress (outer blocking).

The joint approximate limiting probabilities for the multiplexer model

are similarly found by multiplying the truncated Poisson by the truncated

- Ol)

f“‘ 0,

for j <k, where (k=0,1,..,K) and (j=0,1,....]).

binomial; that is,

lim P{C(1) = k. A(") = j} =
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V1. SOLUTION TECHNIQUES

A. SOLVING SETS OF LINEAR EQUATIONS

Two programs were written to solve the system of linear equations
determining the limiting distribution (for both the Erlang and the
multiplexer models). One uses GAMS [Ref. 18], which is a software package
developed to solve large mathematical (linear and non-linear) programming
models. The other uses APL to solve the system of equations through matrix
inversion and was developed by Professor Patricia Jacobs of the Naval
Postgraduate School. The GAMS programs may be found in Appendix A
(Erlang model) and Appendix B (multiplexer model). The APL program for
‘the multiplexer model, in Appendix C, may also be used to solve the
Erlangian system with some adjustments to the input variables.

This solution technique, though accurate, was found to be useful only for
small problems. Using an IBM mainframe computer, the GAMS programs
were solvable for systems of about 15 channels in the Erlang model (with a
load of 15 Erlangs). Beyond that, the solver encounters overflow problems.
For discussion of the computational instability of solving the matrix
equations and alternative solution techniques, see Anick, Mitra, and Sondhi
[Ref. 7:pp. 1873-1874]. The APL programs MATRIXE and MATRIXM were
solved using APL2 on an IBM mainframe. Without increasing the workspace
size beyond the default, it is possible to solve for systems of up to size 21 x 21;
that is, where 21 is the number of both the maximum number of calls in

progress and the maximum number of active calls in progress allowed (253

28




states). It is possible to increase the size of the workspace from the default of
65% to a maximum of 85%, and thereby increase the size of the matrix which
can be solved. However, it takes a long time to solve the larger systems,

especially when creating tables of multiple runs.

B. APPROXIMATION

The approximation routine APPROX, written in APL, calculates the
limiting probabilities for both the Erlang and the multiplexer models. It may
be found in Appendix D. The approximation routine is much faster than
solving the sets of linear equations required to find the limiting distribution
of the bivariate models. It is also able to solve larger problems, given the same
APL workspace size. On the IBM mainframe APPROX can solve problems up
to size 32 x 32 (561 states) before encountering underflow errors in the results
(due to extremely small limiting probabilities, on the order of 1E-75 or
smaller). The approximation will solve for systems of up to C =175
(maximum calls in progress allowed) without halting due to domain errors
(numbers larger than 1E75 in the intermediate calculations). Results from
these larger systems may, however, be inaccurate due to the underflow errors
mentioned above, depending on the value of A (number of physical
channels). For instance, when solving for a system with C equal to 40, the
approximation was able to calculate the results for as many as A =33 channels

before encountering underflow errors.
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C. VALIDATION OF THE COMPUTER CODE

1. Validating Code for the Erlang Model

The computer code was validated in two ways. First the results for
one, two and three-channel systems were calculated by hand for a particular
set of values for A, u, a and B to ensure that results matched those of the
computer programs. Second, numerous cases were calculated using both the
APL (MATRIXE) and the GAMS (ERLANG) programs to ensure that the two
different programs yield the same results. The APL (APPROX) program for
the Erlang model was then compared with results from APL (MATRIXE) to
ensure that the approximation routine yields results which are close to the
actual limiting probabilities.

2. Validating Code for the Multiplexer Model

The multiplexer codes (MUX in GAMS and MATRIXM in APL) were
first validated by ensuring they yield the same results as the Erlang codes
(ERLANG in GAMS and MATRIXE in APL) when all the same parameter
values are used as inputs (i.e. no change in the service rate, no compression
or packet header, and the number of channels J equals the maximum number
of calls allowed K). The APL (MATRIXM) and GAMS (MUX) programs were
also compared to each other to ensure the same results for various sets of
input parameters. Results were also checked for internal consistency; that is,
individual input parameter values were changed separately to check that the
output values change as expected. Finally, the results of the APL (APPROX)
program for the multiplexer model were compared with those of the APL
(MATRIXM) program to check the validity of the approximation routine and

determine the range of values over which the approximation yields results
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close enough to be used as a tool in determining the reduction in bandwidth

requirements.
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VII. NUMERICAL RESULTS

A. ACTUAL VS. APPROXIMATED BLOCKING PROBABILITIES

Results of several comparisons between the actual (MATRIXM) and
approximated (APPROX) multiplexer model are shown in Appendix E.
Comparisons were made for systems allowing a maximum of C =5, 10, 15, 20,
and 30 callers, assuming speech activity (average proportion of time a call in
progress is active) of 35%. Traffic loads displayed depend on the value for C;
the larger the value for C, the heavier the loads, though not larger than the
value for C itself. This restricts the results, and analysis of those results, to the
range of values for blocking probabilities which might be considered
reasonable to plan for when designing a telecommunications system.

The results shown in Appendix E indicate that the approximated outer
blocking (OUTBLA) becomes very close to the actual value (OUTBL) as the
gap between A (number of channels) and C (maximum number of calls
allowed) decreases. In fact, when A equals C, OUTBL and OUTBLA are also
equal. The approximated inner blocking (INBLA) also becomes closer in
value to actual inner blocking (INBL) as A and C become closer. The
probability of inner blocking decreases, becoming zero when A equals C. The
size of the limiting probability of inner blocking is, therefore, also closely
linked to the difference between the actual and approximated outer blocking
probabilities. As inner blocking decreases, OUTBLA becomes closer to the

actual values. Note that there is a trade-off between outer and inner blocking.
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Inner blocking increases as the gap between A and C increases, while outer
blocking decreases.

The question is, at what point are the approximations close enough to the
actual values to be used to determine limiting probabilities; that is, how close
does A need to be to C ? For inner blocking probabilities, the approximation
results are extremely close to the actual values for even large relative gaps
between A and C. For instance, when C =5, 10, 15, 20, and 30, INBLA is
accurate to 3 decimal places when A =2, 3, 4, 4, and 5, respectively (for all
traffic loads displayed). Also, when INBLA is accurate to 3 decimal places, the
first 2 decimal places hold zeros. For the same values of C and the same traffic
loads, OUTBLA is accurate to approximately 2 decimal places for A =3, 3, 4, 4,
and 5, respectively. Thus, INBLA is somewhat more accurate than OUTBLA
and the size of the values for INBLA may be a good predictor of the accuracy
of both INBLA and OUTBLA. Suppose we develop a 'thumb rule' that states:
when INBLA is equal to zero in the first 'x' decimal places, (a) INBLA is
accurate to within 'x+1' decimal places, and (b) OUTBLA is accurate to within
'x" decimal places. Close examination of the results in Appendix E indicate
that our thumb rule is accurate for all values of C, A, and load shown, if the
values for OUTBL are rounded to 'x' decimal places for comparison with
OUTBLA. Thus, by using the approximated inner and outer blocking
together, we can tell fairly accurately how close (within number of decimal
places) OUTBLA is to the actual outer blocking probability by looking at the
proportion of inner blocking.

As to answering the question posed, i.e. how close must A be to C for

accurate results, the response depends on two things; (1) the level of accuracy
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desired, and (2) the value of C. For telephone traffic engineering purposes, the
level of accuracy necessary is generally 2 or 3 decimal places, so we want the
values for INBLA to have zeros in at least the first 2 decimal places. Clearly,
the ratio of A to C necessary for accurate results decreases as C gets larger.
Having developed a thumb rule methodology for determining the
accuracy of the multiplexer approximation results without direct comparison
with actual values, we may now look at the results of the approximation
independently, allowing analysis of larger systems. The approximate results
are much more quickly obtained, making it feasible to conduct multiple runs
for different levels of speech activity. Analysis of these results, displayed in

Appendix F, is the subject of the next section.

B. SENSITIVITY ANALYSIS OF THE APPROXIMATED INNER BLOCKING
PROBABILITIES

The approximation routine for the multiplexer model was run for
different values of the initial mean'leng.th of a talkspurt, -1, and mean
length of a silence, a~1, such that speech activity occupies 28 percent, 35
percent, and 42 percent of a call in progress. This was to determine sensitivity
of the inner blocking probabilities (4) to changes in speech characteristics.
Since the approximated outer blocking probability is calculated from the
Erlang loss formula (2), it is not affected by any parameters other than A, p.
and K.

The average length of a phone call, p-1, was taken to be 180 seconds (3
minutes) for all runs. Speech activity rates considered were 28, 35 and 42
percent. The mean talkspurt and silence lengths are assumed to be 288 ms and

740 ms for the first case, 352 ms and 650 ms for the second case, and 420 ms




and 580 ms for the third case, respectively. Values for the last two cases are the
same as those used by Sriram and Lucantoni [Ref. 14:pp. 703-712].

Results of runs for C =5, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125,
150, and 160 are given in Appendix F. To use the table in Appendix F, you first
find the load (column 1) for which outer blocking probability (column 2) is
less than or equal to a specified value, say 0.01. In the case of C =20, the
corresponding load is 12. The next three columns give the approximate inner
blocking probability for speech activity rates of 28, 35, and 42 percent,
respectively. The most conservative (highest) estimate of inner blocking
would, of course, be found in the last column, representing the 42% activity
level. If you wish a total blocking probability of no more than 0.01, accurate to
within 2 decimal places, then you find the value of A for which, given a load
of 12, the value for inner(42) is zero in at least the first 2 decimal places, and
the addition of the outer and inner(42) blocking probabilities is closest to, but
still no greater than, 0.01. Notice that we are not subtracting out the joint
blocking probability (as on page 21) after adding together the inner and outer
blocking probabilities. This is primarily because the joint blocking
probabilities are so small as to be insignificant to the results of the
calculations. Also, any error thus induced would be on the side of
conservatism, and therefore tolerable. For this example, the value for A
(number of channels) which meets the requirement is 5, which is one-fourth
of the value for C (maximum number of callers).

Figure 5 shows a graphical representation of the data from Appendix F,
for C = 20 callers and speech activity of 35%. It actually represents two graphs

superimposed on each other. The one graph shows guter blocking probability
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versus load when C (maximum number of callers allowed) is equal to 20.
This is calculated using the Erlang loss formula (2). Curves for C<20 would be
higher and to the left of the curve for C=20 (+ symbol); curves for C>20 would
be lower and to the right. Graphs showing the curves for selected values of C
ranging from 1 to 80 may be found in Cooper [Ref. 5, pp. 316-319]. Cooper uses
different symbols and also uses a logarithmic scale for the blocking
probabilities, which gives a different shape to the curves. The calculations
and results, however, are the same. The other graph displayed in Figure 5 is
inner blocking probability versus load for various values of A (A =3, 4,5, 6)
when C=20 and speech activity is 35%. Remember that the value for A
represents the number of channels (or equivalent bandwidth) available. The
goal is to minimize the value of A while maintaining a specified standard of
service; in this case, total probability of blocking no greater than .01.

From Avrpendix F we see that when C=20 and the load is 12 erlangs, the
outer blocking probability equals .009796, and 12 is the highest load the system
can take without exceeding the .01 limit on total blocking. Inner blocking can
be no greater than .000204. We must find the value for A which satisfies this
requirement. For speech activity of 35%, A=5 channels is sufficient, with
inner blocking of .000148. Three channels is clearly too few, four channels
will only work at the 28% level of speech activity, and six channels exceeds

the standard of service required.
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OA=3 OA=4 AA=5
OA=6 *C =20

Blocking Probability

Figure 5. Outer Blocking Probability vs. Load for C = 20, shown with
Inner Blocking Probability vs. Load for various values of A (given C =
20), assuming 35% speech activity. From Appendix F.

Given specific criteria for desired blocking probabilities and accuracy
levels, we can make tables of the values for the load and for A necessary to
meet those criteria for each value of C. Conversely, if the load is fixed, there
is a specific value for C which will meet the desired blocking probability. We
can also determine the magnitude of the effect that the proportion of speech
activity has on the value of A chosen. Table 1 below is an example, where the
desired total blocking probability (again ignoring joint blocking) is no greater
than 0.01 and is accurate to within three decimal places. The data from Table

1 are graphically depicted in Figures 6 through 8.
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TABLE 1. VALUES OF A FOR GIVEN LEVELS OF SPEECH ACTIVITY,
WITH TOTAL BLOCKING NO GREATER THAN 0.010; ACCURATE TO 3
DECIMAL PLACES.

C |LOAD|A: INNER (28)|A. INNER (35)|A. INNER (42)
5 3 3 3 4
10 4 3 3 4
20 12 4 5 5
25 16 5 5 5
30 20 5 5 5
35 24 5 5 6
40 29 6 6 7
45 33 6 6 7
50 37 6 6 7
60 46 6 7 7
70 56 7 8 8
80 65 7 8 9
90 74 7 8 9
100 84 8 9 10
125 107 8 9 10
150 131 9 10 11
160 | 141 9 11 12

Results of this study indicate that for low loads, the addition of
multiplexers provides very little, if any, advantage in terms of reducing the
number of channels necessary to provide acceptable blocking probabilities.
The advantage increases dramatically as load increases. This is shown in
Figure 6, where C and A represent the number of channels needed without

and with multiplexers, respectively. Also, the level of speech activity does
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have some impact on the number of channels required. However, the values
of A for 35% speech activity are within *1 channel of the values obtained for
the lower (28%) and upper (42%) speech activity levels. This is shown in
Figure 7, which gives a closer view of the bottom three lines from Figure 6.
Figure 8 shows the use of regression analysis to interpolate the number of
channels required for loads between those listed. The quadratic equation
generated by the regression gives a model for predicting the value of A (on
the Y axis) when the load (on the X axis) is known, given desired total
blocking of no greater than 0.01 (accurate to within 3 decimal places) and
speec};n activity of 35%. Note that since the information in Figures 6 through
8 is taken from Table 1, all three figures assume total desired blocking
probabilties of .01. Once this is fixed, it fixes the value of C for every
corresponding load, and vice versa. Therefore, the values given for A are
dependent on the value of C as well as on the load, and C could be substituted
for load on the X axis of the three graphs. The fact that load and C are
dependent on each other allows us to use just the load to determine the value
of A (number of channels needed for a multiplexed system) without doing
the intermediate calculation to find the value of C (number of channels
required for a non-multiplexed system), given, of course, that we know the

desired total blocking probability and level of accuracy required.
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Figure 7. Channels Required for Various Speech Activity Levels; Mux Model
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VIIL. CONCLUSIONS

In this study, we first developed stochastic models of a single-node
telecommunications system both without and with the addition of an
intelligent multiplexer (the bivariate Erlang and the Multiplexer models,
respectively). The models were solved using matrix equations to compute the
joint limiting probabilities for k callers and j talkspurts, as well as outer
blocking and inner blocking probabilities (respectively the proportion of time
the maximum allowed numbers of callers and talkspurts are in the system).
Both GAMS (Appendices A and B) and APL (Appendix C) were used to do the
computations for the purpose of validating the computer code.

Approximation routines (Appendix D) were then developed that were
capable of performing the calculations much faster and for larger systems.
Results from the multiplexer approximation were compared with the actual
blocking probabilities computed from the matrix equations (Appendix E). A
rule of thumb based on the size of approximate inner blocking probabilities
was devised to determine the accuracy of both the approximate inner and
outer blocking probabilities. Sensitivity analysis was also done to determine
the effect of different levels of speech activity on the inner blocking
probabilities (Appendix F). Given desired outer blocking and total blocking
probabilities, as well as desired level of accuracy, it is possible to determine the
number of channels (A) required to handle a particular traffic load in the
multiplexer model, and compare this with the number of channels (C)

required in the Erlang model.
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Analysis of the results from the tables in Appendix F indicate that
addition of a multiplexer significantly reduces bandwidth requirements,
particularly for heavy loading. The multiplexer advantage decreases to the
point of insignificance as the load becomes very small (less than 3). The point
at which the addition of multiplexers becomes advantageous depends on the
cost of the adding multiplexers to a network vs. the cost of leasing the
additional channels or bandwidth. These costs are affected by the number of
nodes in a network, the geographical distances between nodes, and the
loading along the links between nodes. A lightly loaded network with many
nodes which are close together will benefit less than a heavily loaded system
with long distances between relatively few nodes.

This study does not compare model results with data from actual systems.
Nor was the multiplexer model developed to fit data from a real system. The
Erlang loss formula has been found to have much practical use in designing
voice telecommunications systems which do not utilize intelligent
multiplexers. It is hoped that the methodology employed to adapt the
bivariate Erlang model to reflect particular multiplexer characteristics will
likewise prove useful in determining bandwidth requirements for systems
which use intelligent multiplexers. Further study is recommended to validate
the multiplexer model through comparison with data from a multiplexed
voice system. Adjustments to the model may also be made to reflect different

performance characteristics and input parameter values.
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APPENDIX A

The following GAMS program computes limiting probabilities for the bivariate
Erlang system. Results shown are for a three-channel system with the following
charactenistics:

Mean call length (u-!) of 3 minutes (180 seconds).
Load (A/u1) equal to 1.

Mean talkspurt length (B-!) of 352 ms (.352 seconds)
Mean length of silence (o) of 650 ms.

Speech activity of 35% (a+(a+B)= 0.35).
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APPENDIX B

The following GAMS program computes limiting probabiliues for the multiplexer

model system. Results shown are for a three-channel system with the following

characteristics:

Maximum number of calls allowed equals 5.

Mean call length (u-1) of 3 minutes (180 seconds).
Load (Au) equal to 1.

Mean talkspurt length (B-1) of 352 ms (.352 seconds)
Mean length of silence (1) of 650 ms.

Speech activity of 35% (a+(o+P)= 0.35).
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APPENDIX C

The following program may be used to solve limiting probabilities for the bivariate Erlang
model by setting "COMPRESS" equal to 1, "RO" equal 1o B and "HEADER" equal ro 0.

YMATRIXM CD
(11 a MATRIX FOR ADAPTIVE MULTIPLEXER

(21 O0I0e€!
[3] A THIS PROGRAM USES MATRIX INUERSION TO COMPUTE
LIMITING

(4] =~ PROBABILITIES FOR THE MULTIPLEXER MODEL.

[S] a IT REQUIRES A VECTOR INPUT OF 8 ELEMENTS.
(6] a LAM IS THE CALL INITIATION RATE.

(71 a MU IS THE CALL TERMINATION RATE.

(8] A ALPHA IS THE TALKSPURT INITIATION RATE.
(9], a BETA IS THE TALSPURT TERMINATION RATE.
(190 a A IS MAX NUMBER OF ACTIVE CALLS

(111 A C IS MAX NUMBER OF CALLS IN PROGRESS
(12] a COMPRESS IS THE COMPRESSION RATE

(131 A FOR PACKETIZED TALKSPURTS.

(14] A HEADER IS THE PROPORTION OF HEADER INFO
[15S] A TO MEAN TALKSPURT LENGTH.

(161 a B IS THE INCOMING RATE IN BITS~/SEC.

(171 LAMeCDL1]

(181 MUeCDL2]

(191 ALPHA«CDL3]

[20] BETA¢CDL4]

(211 A€CDIS]

(221 CeCDL61

(23] COMPRESS¢CDL7]

(24] HEADERe¢CD(81]

(251 B€32000

(261 A RO IS THE RATIO OF THE INPUT TO OUTPUT
[27] A TRANSMISSION RATES x B.

(28] ROe€AxB

(29] SIZEe(+/1(A+1))

[30] SIZE¢SIZE+((C-A)x(A+1))

(311 Me(SIZE,SIZE)eO

[32] A PROCESSOR SHARING SERVICE

{331 A BETAM IS THE TALKSPURT TERMINATION RATE AFTER
{34] A ACCOUNTING FOR COMPRESSION AND HEADER.
{353 [INUBETAMe ((1+COMPRESS. ~HEADER) xBxINUBETAR¢1+BETA
[36]1 BETAMel+INUBETAM

[37] SERVeBETAMxRO
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£(381]
[391]
[4Q1]
(411
(421
(431
(443
451
(461
[47]
[48]
(491
£sel
£S11]
(521
(331
[S4]
a

(551
(561
£s71
(58]
[591
[60]
611
(621l
(631
[64]
{631
(661
{671
(681
(691
[70]
(711
[val
{731
(741
(7S]
(vél
[z71
[781]
(791
(801
(811l
(82l

MC1;1]¢0
ML1;37€LAM

CCe0

FINISHe1

ITER:

START¢FINISH+1

CCeCC+1

LEV«CC

REACHAxX1 (LEU=A)
>LARGAX1 (LEUDA)
NUMB€LEU+1
FINISHeSTART+ (NUMB-1)
MLe ( (LEU+1) ,LEV) p0@

MMe ( (LEU+1) , (LEU+1)) 0
MRe ( (LEU+1) , (LEU+2)) 0
SNEXTMA

A NUMB OF CALLS IN PROGRESS

REACHA:
NUMB¢A+1
FINISHeSTART+ (NUMB-1)
MReMMe ( (A+1) , (A+1))p0
MLe((A+1) ,A) p@
SNEXTMA

MAX NUMB OF ACTIVE CALLS

A NUMB OF CALLS IN PROG > MAX NUMB 6F ACTIVE CALLS

LARGA:

NUMBeA+1

FINISHeSTART+ (NUMB—-1)
MReMMeMLe ((A+1) , (A+1) )0
NEXTMA:

CCle0

INNERR ¢

20UTRx1 (CC1=(LEVU+1))
CCleCC1+1

2 INNERR1x1 (CC1=(LEVU+1))

MLLCC1 ;CC1Ie(LEU-(CC1-1))xMU

INNERR1 :
2 INNERR2x1 (CC1=1)

MLLCC1;(CC1-1)1e(CCL-1)xMU

INNERRZ2:

2 INNERRx1 (CC1< (pMLIT1])
QUTR :

CMe0

INNERM:

s0UTMx1 (CM>A+1)

CMeCM+1
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“

£831]
(841
£851]
(861
{871
(881
[891
{901
(913
(921
(231
[94]
(951
[sé6]
[971
(98]
{991
[100]
(1011
(1021
(1031
[1e4]
£1051]

ANEXTM1Ix1 (CM=(peMM) [11)
MMICM ;CM+1]€ (LEU-(CM-1) ) xALPHA

NEXTML:

SNEXTMx1 (CM=1)
MMLCM ;CM=11€SERUx (CM~1)

NEXTM:

2 INNERMx 1 (CM< (oMMIL11)

QUTM

CLe<o

INNERL :

30UTLx1 (CL2R)

CLeCL+!
MRICL ; (CL+1) J¢LAM

S INNERLx1 (CLL (oMLY LT D)

QUTL :

START1€START-1
2CEQAx1 (LEVU=A)

2CBIGAx1 (LEU>A)

MOSTART1+ (1NUMB) ; (START1+ (1NUMB) ) 1¢MM
MISTART1+ (1NUMB) ; (START-NUMB) +1 (NUMB-1) J€ML
2ENDx1 (CC=C)

MISTART1+ (1NUMB) ; (START1+NUMB+ (1NUMB+1) ) 1¢MR
2 ITERx1 (CCKC)

[1061CEQA:

(1071
(1081
(1091
(1101
[1111]

MOSTART 1+ (1NUMB) ; (START1+ (1NUMB) ) J¢MM
MISTART1+ (1NUMB) ; (START-NUMB) +1 (NUMB—-1) 1€ML
2ENDx1 (CC=C)

MISTART1+ (1NUMB) ; (START1I+NUMB+ (1NUMB) ) 1¢MR
> ITERx1 (CCKC)

{1121CBIGA:

(1131
[114]
[115]
(1161
(1171

MIESTART1+ (1NUMB) ; (START1+ (1NUMB) ) J€MM
MESTART1+ (1NUMB) ; (START1-NUMB) +1NUMBJI€ML
2ENDx1 (CC=C)

MOSTART1+ (1NUMB) ; (START1+NUMB+ (1NUMB) ) 1€MR
2 ITERx1 (CCLC)

[118]END:

(1191
(i120]
{12113
(1221
(1231
(1241
[125]

IDENT« (1SIZE) ° .=(1SIZE)
IDENT¢IDENTx ((SIZE,SIZE)e (+/M))
MIeMeM-IDENT

ML;1]3ed

LHSe (1 ,SIZE)p (1, ({(SIZE~1)p®))
PIA€LHS+ . x (BM)

MATRIXex (3, (p ,PIA))PSC,SA, ( ,PIA)

v
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APPENDIX D

The APL program APPROX calculates the limiting probabilities for both the Erlang
and multiplexer models using approximation techniques. It calls the routine STATES 1o
help format the output. BLOCK is used to compute the inner, outer, and combined inner-
outer blocking probabilities for both the approximation (APPROX) and the actual

(MATRIXM) calculations for comparison.

CRPFROX CHi

(11 OI0«1
(21 A THIS PROGRAM REQUIRES A VECTOR OF 8 ELEMEMTS AS
IHFUT.

(3] w~ IT CALCULATES THE LIMITING PROBABILITIES FOR THE
MULTIPLERER

(4] w~» RND ERLANHG MODELS USIHG MATRIXK IMUERSICH.
(31 m L IS LAMEDA, THE CALL IMITIARTICH RATE.
(el A M IS MU, THE CALL TERMINATIOH RATE.

(7] m ARLFHA IS THE TALKSFURT INITIATIOH RATE.
(2] & BETA I3 THE TALKSFURT TERMIHATIOM RATE.

31 A IS THE HUMEER OF CHARMMELS.

[(19] C IS THE MAXIMUM NMUMBER OF CALLS ALLOWED.

[11] ~ COMPRESS IS THE COMFREZSION RATE OF PACKETIZED
THLKEFLURTS.

(121 HERDER IS THE FPROPORTION OF HEADER IMFORMATIOHN TO
(131 MEAN LEMGTH OF TRLKSPURT.

£14] E IS THE INCOMIMG RATE IM BITS-SEC.

[13] L<CMMLC1]

Cie] HMeCHMMIZ2]

(1v1 ALPHA«CMML3]

[18]1 BETA<CMML4]

(191 R«CMMLS]

(el CeCHMLS]

(1] COMPRESS€CMML?7]

(2] HEADER«CHMLS]

(231 B«320n

(241 RDO<AxB

(c3] A CALCULATION FOR BIMOMIAL FROB. OF J TALKEFURTS GIVEH
K CHARMHELS

(251 A FOR ERLANG

(zv 0Io«0

(231 AaDIMe(A+1) , (A+1)

22]) APRA<DIMRH

[3D] mAl<ALFHATALPHR+EETRA

(21] AASCEETATALFHA+EETA

I

I

X

I
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[32] RKeO

[33] AJer1A+]

i AINLP :PRALK ; J1€ (JIKI X (R1XJIx (AZX (K-J))

£35]) mKeK+1

[32] A>(KSAYZIHLP

[E7] A FOR MR ,
[Z2] A IMUEETHM IS THE MNEW TALKSPURT LEMGTH Itt EITS
{3291 A AFTER COMPREZSION AMD HEARDER ARE COMSIDERED.
{381 INUEETAM<«({ (1+COMPRESS)I +HEADER)I B IHVEETA«1+EETA
[32] EBETAMe(1=-IHUEBETHM)

[49]) SERU<BETAMaRLD

[41] DIMMe(C+1),(A+1)

[42] PRAMeDIMMeA

[43] KeQ

[44]  Jer1A+H]

[43] IHLPM:PRAMIK ;1€ (JIK)I U (ALPHA+SERLG £

[45]1 KeK+1

(471 2 (KSC)-IMLPH

(421 POe((A+1) ,(C+1)Ipl+(+/PRAM)

[49] PRAMeaPOxgFREAM

[Z8] A TRUMCATED FOISS0OM PROEBABILITY OF K CALLERS
[31]) A GIVEH MAK J CHAMHELS

(521 A FOR ERLAHG (MAX CHARMMELS = MAX CALLERS
[(33] LOmD<l+M '

[S4] AK«r1A+l

[235]1 AFRC« (LOADEKY =K

[36] ARFRCE¢PRC+(+/FR)

[57] AALPE+«PRrAxED IM-FPRCE

£58] mAPUOUTBLE<+-ALFELA;]

{591 A FOR MUR (MAX CHANHELS = A, MAX CALLERS
[e0] aKe(1C0-R/) +A+]

[61] APID«PRC, (LOAD3K) +IK

[e2] K+i1(C+1

(3] PIOZe(C+1)pl

[ed4] I+¢9

[&5]) MKPIO: R«

[A2] MKPIOZ:PINZLII«ILOAL=RIXPINZIT]

{571 Rek+l

[£3]1 < (REKLINDAMKPIC2

(23] TelI+t

(vral =+ (I<C)AMEPIND

(711 APRCHM«PID++-,PID

[72] PROMzePIO2++/PIN2

[73] DIMM2e(A+1) ,(C+1)

[74] AALPM<PRAMxSDIMM2RPRIM

[?3) A FORM MATRIR CUTRUT

,_‘
QL

L
—

A)

]

C)




(761 ASTATES(A,C)

(?7) mALPE«(,ALPE>Q) 7 ,ALFE

781 RALPHMe( ,ALPM>B) 7 ,ALFH

{721 AALPE<ALPE, ((pSAR)~(pALPE) IpBA

[36] ARALPMeALPM, ((2SA) = (pALFM) ) RO

(5311 AMATRINAP¢R (4, (#SA))REC,SA, (ALPE) |, (ALPM)
(=1 0Io+t

<

“STATES CH
(1] A THIS FUNCTIOM RETURNMS 2 VECTORS WHICH,
(2] ~ TOCSETHER, GIVE THE STARTES IH TERMS COF
SCh! HUMEER OF CALLS AMD ACTIVE CALLs (T,A)
(4] OI10«!
(=1 AasCMiL1]
(=1 CeCMLZ]

I

(7] UUsD 1N
[3] SAe1d
(91  SCeld

[18] SA€SA,0

(111 3SCesC,Y9

[12] LzU«B

(13] ITERS:

(131 LEUeLEU+1

[15] SA«SR,VLIVILEV=13 D)

[1£] SCeSC, ((LEVU+1)elLEW)

[17] =ITERSx1 (LEULA)

(1281 <EHDx1 (A=C)

(i3] ITERB:

(B3] LEU«LEU+1

[21] SReSA,LV

[22] SCeSC, ((pUL)LEV)

[(e3 +ITERBx1 (LEULC)

[24] EMD:

L

SELOCK CM

APPROX CHM

MATRIXM CHM

INBL«+- (SA=A}/ ,FIA
CUTBLe+~ (SC=C) 7 FPIA
INOUTRL«INEL+OUTEL-"11 ,PIA
IHBLA¢+~7 (SA=R) 7ALFH
QUTELA¢+~ (SC=C) 7ALPHM
IMOUTELA«INELA+OUTELA-T1TALPHM
MATRIRE«Q (4, (p ,PIA)ISC,SA, (ALFM) , (,PIA)

hv4

Lonn SN som TN o BN o 2N un BN e B e BN o I e |
S UREUN BRGNS DR, IS SO N £V I

[ S NUU R WA [ S [ GHN N UES [ BN R G 6]
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APPENDIX E

These tables compare actual outer and inner blocking probabilities (OUTBL, INBL) with
their approximated counterparts (OUTBLA. INBLA). Resuits are shown tfor C (maximum number
of calls allowed) equal to 5, 10, 15, 20, and 30. The values for A indicate the number of available
channels.

The level of speech activity (average proportion of time a call of infinite duration is active)
is assumed to be 35% for all runs. The mean length of a call is 3 minutes. The mean length of a
talkspurt (B-1) is 352 ms. The compression factor is 4-to-1 and the length of the header
information is 15.625% of the mean length of a talkspurt. The rate of each active incoming
channel is b = 32 Kbps. Thus, the value of (B-1)* is 4576 bits. The outgoing channel rate s is

equal to A, the number of availabie channels, multiplied by b, the incoming channel rate. The

values for load (A/1) are as indicated in the tables.
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C o3 A

LOa0 SuTeL ouTsLA INBL INBLA
10 .090830  .0030e7 L139%41 L1838 79¢
2.0 .008535 . 35ee9? I 111 B YY T 7]
3.0 .oriloy [ ST-1-1 1Y L2287 L366872
.0 L9s000 199047 RO L393833

[ ] LI

L3aD JuTBL qUIBLA 1.8 InBLA
i.00 Lasial? FE3TY S3043s8 13113
s 335988 N ITTYE RCREYSY |
3.3 13283 L1k L3252 .0I8e02
.. 0 B B N4 AT Y4 B HEPEY LT PN

e s A+ 3

L0042 SUTBL qu°sLA INBL INBLA
0 303043 L33ie? 333347 .005064
2.9 AT Y BYYE 2 el sudled
H-} L1092 L 1isGse MLTETY 930401
..3 .198842  Livv0e7 03.%3% L2002

T e 8 A o4

LCaD CUTB, ouTELA INBYL INBLA
N PR 1Y) .305047 23300 .8800%0
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APPENDIX F

The following tables show results of the approximation to the multiplexer model when C
(maximum number of calls allowed) equals 5, 10, 20, 25. 30, 35. 40. 45, 50. 60. 70, 80. 90,
100, 125, 150, and 160. The values for A indicate the number of available ci.annels.

Outer blocking probabilities are calculated from the formula for the truncated Poisson
distribution (2). Inner blocking probabilities (equal to Py(k), from (6), where J = A) are compared
for three different levels (28%, 35%. and 42%) of speech activity (average proportion of time a call
of infinite duration is active). Mean talkspurt lengths (B-1) are assumed 10 be 288 ms. 352 ms. and
420) ms. reépectively, for the three levels of speech activity. The compression factor is 4-t0-1 and
the length of the header information is 15.625% of the mean length of a talkspurt. The rate of each
active incoming channel is b = 32 Kbps. Thus, the values for (8-1)* are 3744, 4576. and 5460
bits. respectively, for the three levels of speech activity.

The mean length of a call is 3 minutes. The outgoing channel rate s is equal to A. the
number of available channels, multiplied by b. the channel rate. The values tor load (A/u) are as

indicated in the tables.
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.v008030
.3000400

4gonse
.303620

INNERE3S)

.0QC200
-860200
-33003¢0
-3cocgo
-30%000
.3803c0
.3000.)

300503

L2003522
-300600
-8030¢C0
.380239

INGER(GD)

.300010
.800012
-94%0013
.C00915
L3020

<00C.8

03%02%
.90032:

IMRNER(SD1

-306091
+%0zat

.303800
.eQ0cas
.38¢339

QuTER

.0030%2

€N

.007840

INNER €SS )

INNER (&2




1.0 .91%872¢4 -0000C8 1111 1) -0C0s 10
8.0 .0ie%90 -800ace .900692 -000455

119 .006092 .00004¢ .028273 .070400

2.0 .00532%  .008<97  .029%44  .0732e8
78,9 .006820  .008930  .030888  .075%04 79.0  .032¢34  .00000%  ,000097  .000e92
76.0  .0CBe03  .00%363  .03213%  .c6les0l 80.0  .02el2 .000009 000103  .c00d)e
75.0 L0106 009796 033399 81044 1.0 .0303¢3  .000010 .200108  .D007e}
7. e LQI3I1S L010320 .03c439  .0838D2 82.6  .03<01% .000010  .000113 R-11241)
1.0 L01887¢  .010e39 035881  .l85%27 3.0  .039%27  .000011 . 00231l8  .0CI8SL
8.9 L318980 .311849 037010  .0887%1 84.0 . 04asl3  .008011  .S00IZS  .2038a3
1905 L322436  .Dlles8  LON@ITI .0%0437 85.0  .0:%92¢ 000012  .230:2 .55289%
83 2 SIeI32 0 31iBIS L 3IINIL 392429
8..3 L0305 .SI3209 340333 L3i¢elS ——memeemee—ee—eoa e
8.8 ALY BR L1569 Q41382 L0964 BLOLK (NG PRSBABILITIES FOR I o 93 A e 0
] L339827  L3i2913 L6elIC) 398470 e LR e L SR P TP T
o~ 3 nsel8 313262 L94522¢ Y-ME LoAd OUTER  €Ri25) IMNEBIIY,  roe€3,403
85.5  .04991¢  .012556  .04<0%% 1014871 vememe— B R R
70.6  .0030%>  .883060 309063 . 20233
A 234092 2c93c3 3 FEEE ]
73.9 .3:512% .s2Isse 3 $333ee
75.0  .0Ce#I0  .303CC) 233638 .303es
.Cad SUTER  INNERIJB) INNERUIS) INNERL42) 74,8 .23383%  .0Cd300 330005 FEE
----------------------------- R Dbl D L 5.0 .010e95 .030C00 11131 LCGGIes
7905 .3033%2  .030887 L0042 .BieIs} o0 .0If1LS 303060 338336 . 2il3e.
LA L30<C92 L30092% 004920 .01)s8} 779 515874 903200 20030 33835
7003 .605335  .0C399s L3332 .018e29 78.0  .3isme 983080 .363237 .383313
PR} .J0820  .001058  .0CSSIY 319581 7$.0  .32248& 338330 52687 LIistie
Te.3 L3033 L00MId¢  .CISB3Y 000832 80.5  .02e232  .353103  .iil038  .30.378
76,0 .310e%%  .001190  .00ei4é  .2214T7S 81.0  .33036¢S  .gcuLidl J0c00s 250298
Te. 0, .315115  L3012%¢ 008452 .322407 2.0 .aely .o0ilol L0250 255387
719 L01%824 90l .C0878%  .02822 1.0 089877 .338301  .33383 EELELR
78.5 .048980  .301:dé 007053  .024lis 04,0 .063820 .683:l3l .3908:0 302338
790 .323434 301453 .007344 025085 89.0  .3¢9928  .000UC)!  .300013 063239
85.0  .024232  .901512  .207¢28  .02%97
8..3 335345 .C21SU73 .007903  .22)39 e e——a- - B
8.9 15819 .001eS52  .CO81é8  .ClVSiS BLOCX NG PRCBABILITIES FOR C s 93 & « 13
.0 .G39S77  .00.aB%  .J0B4QS 01824
84.0  .06&620 001743 .20B86e8  .02897¢
85.0  .349%93¢  .0017%  .0CE90r  .CQ29e53
70 0 .3%3132  .503003 .002030  .30833%
- 71.3 L0842 50000 .0908530 .325538
BLCCKING PROBABILITIES FOR C e 90 A & 8 72.0  .00532%  .390000  .335030  .2cd3ls
-------- ——mmmmm oo —aas - 7$.0  .004820  .000008  .330080  .203C0&
LCAD JUTER INNER(28) INNER(3S) INNERI(42) 74.0  .00B40S  .CBC000  .383008  .09033¢
------ et mmm e mmmescne et e e ——— 75.0  .31Ce%5  .00C300  .833%30 388355
76.0  .0032%2  .900073  .000%S%8 .002909 76.0  .01311S  .3C63G0  .333330 L3355
T1.9 .004392  .000076  .J00683  .ocli2l Tr.0 .31S816 300323 .3Q0C30  .gsaCcs
F2.6 .G0S531S  .000083  .00064%  .0033I8 78.0  .0im%80  .200300  .300003  .3i3ise
75.8  .00e830  .Q0008%  .0004%¢  .003%58 7%.0  .Bl2434  .300COY  .006039 £62233s
T6.0 .238eC3  .0200%6  .000744 003782 $0.3  .0l4382  .200000 000230 . 0d2d07
75.0  .0108%  .000102  .000793  .304004 1.0  .333345  .003000  .300030 333337
76.0  .01311%  .000I.Y  .000842  .004230 2.0 .0S«819  .3C0000  .200001 300337
77.0  .515874&  .DCGile  .00089%0  .00¢&SS3 83.9  .239%77  .8C30C3  .30CC0H L3e8ice
'9.0  .018980  .2001I3  .000939  .004é73 86.3  .06¢420  .CZ0GCO  .230331% .323388
TY.0 .32243&4  .C0OI3d .300%87 004890 85.0 0«94 .330000 965831 233259
83.3  .92e232  .0001ls  .00103&  .00SICH
81.0  .3503e5  .000143  .001080  .00330¢
020 .3%581y 00014y .30412¢ 0055085
85 3 .939577  .000155  .301ls8 . 005497
85.9 L.aw20 005541 .cotloy 005882 LOAD OQUTER  IWSER( I8 [MNETLSS  IneERILD
8BS 3 .3e997e  .053i67  .03:250  .0Qess  ===e- B e L e LR L bt
70.0 003092  .3¢0000 356938 .ccase
RO emrecevemmmmmram————————— —————memae —————- 71.0  .004397  .080100  .33CC00 033222
BLOCKING PRCBABILITIES FOR € & 90 A o 9 [ B FL O | 0c. .20 FETY.EF] Siwwid
73,0 .004830 .iCt30 s20830 .59%8c)
7¢.0  .008403  .ZDGIB3  .LO3SER .32038)
........................ ———————— 5.9 L0159 £23000 820533 .3C338D
72.3 . 003092 .020004& .9000%0 .000370 6.0 L0111 .390000 383033 J3¢L3Y
71.3 0 .63¢991  .:00005  .3003%%  .000403 77.0  .91%87&  .080068  .833%3 .ecased
72.9  .03533%  .00000S  .300040  .000437 78.0  .21B988  .0000CO0 000630 €338
0 .00s820  .3C000s  .000248  .080¢J2 790 .ell634 030303 330023 .93c000
PO I TY-H L3083 .GL0010 RLILT ] 00.2 RN RN -900009 seesae 33300¢
79.0  .010e9%  .300007  .C000?S  .3C0S¢S 1.5  .0310%4%  .0CO300  .0GQ008  .300COQ
7.0 .01331%  .000007  .000081 .000502 2.0  .03i819  .00T303  .033300  .000031

68




831.0  .039877  .00pooo  .000000  .00000)
94.0 .064020 . 000000 ,0000060 .000001)
85.0 049914 Q00000  .000000  .000001
BLOCKING PRCBABILITIES FOR C » 100 A
Load OUTER  INMER(2@) INSERLIS)  INNERLGQ)
£3.0 T1te92 L0C1/ a8 .363490 028781
8:.0 -850y .0018e9 L3602 .020018
8l.0 FETTYY) .301978 .009%30 LIl
8.0 .LL0050 00237y .0100382 -032534
3~.0 NPLLES .00::89 010ea2 Q83728
85.90 .0319%0  _00:>9%0 L01092%  .03<%97
3.0 L31639s 90298 .0il3eY L03419%
8/.2 LO17898 L3l sriace L0878k
88.2% .02Gi98 L7300 e g .950%00
2.3 L92sle EENYL CLle3é  .0Iveco
.9 LG2e987 00279 .01303% 040661
*1.0 .0%0a1s .00s99%¢ La13sll -0&le8)
92.0 B I 1N} .Q02981 913792 .062658
930 L33733¢ .0030+8 L0l41eY .0e3592
9..3 -4 1Y ] L0838 .B14490 .0644082
5.0 . 048804 .303233 .01481¢ 04812
S;UCKlNé PROBABILITIES FOR C » 100 LN J
LCad OUTER IMNER(28) IMNERIIS) INNER142}
89.0 .003992 .00018? .o0l2is .8059387
81.3 .305109 .00Q17Y .00131s .J04288
82.2 ELIXYS ] .00019%2 001401 .006632
81.0 008020 .003204 . 001484 .C06I86
84.0 .009873 .e00217 .001Se8 .00735%5s
85.0 L31.19%0 .00022Y .001853 .007s87
3.0 .31439S L0JA2¢l .QEITY6 208054
b ) .017093 .000255 .00181 .Q0837¢
88.90 .320C88 30027 L0010l .Qc8712
89.9 -2 3 .g002480 .0019%82 .00%040
9.9 .B28957 .000292 .002040 -00935%
’"n.0 .33c8.9 .00Q:0s .002:37 .00%6e8
92.0 L3249¢8 .90021% .302211 .009%67
3.0 Lareile L200338 . 002282 .010254
9.9 L9639 .000Q237 .G0235%) .010%30
.0 068804 . 000347 .002418 .01079%4
BLOCKING PRCBABILITIES FOR € o 100 A a9
LIAD SUTER  INMER(ZS)  INNER(3S)  IMMER(GD)
820 90392 .000012 .000133 .00089S
81.0  .2l5169 .000018 .000160  ,0009%9
<3 L3086 .000014 .000151 .00:02%
83.3 J0032) .00001% .000141 .001092
LR 038’3 .008016 200172 .001:.8Y
8%.9 6i1990 .000017 .000188 L0028
LI} 139 .900018 .00019¢4 L0012
3.3 EREEH .000019 .000208 L0136
88.¢ :23t88 .003030 .00 .001+350
8.0 L3283 .00Q021 .000227? L0014%6
9.9 L0IeNs? .0080023 .030232 .001Sel
4.9 L3388 .00002¢ .0002¢8 .001424
2.0 RTR IS | .00602% .000250 ,001e8%
3.2 L0984 .00002¢ .0002¢8 L0017¢8
9%.0 N IRE2] ] .006027 .000227 .001802
’s ¢ 349804 .000029 .000287 .00105?
B.OCKIMNG PROBADILITIES FOR C = 100 A 10

69

0.0
el.0
2.0
8.0
%0
8s%.0
8s.0
8.0
8d .0
8% 0
0.3
1.9
2.9
ss. 0
"% .0
9%.0

QUTER

.003992
.00510%
Q05449
.0C8030
.60%a7s3
.alivso
NIT3LH
e17098
.c23088
RS2 HY
L02e987
.330818
.034948
.03923¢
253958
-04080¢

INNER (8}

-300001
.%00003
.900001
.300001
-:90001
-300001
-80c00)
-800001
-305391
-3%azat
.Gooso!
L3030

.800001

.80¢s02
-300002
-330062

INERTSS)

.000010
000011
.gogat2
.000013
.000831¢
.080015
.000017?

-0006C8
L9003
.8¢0css
.9C002e

BLOCKING PROBABILITIES FOR C » 100 a

IgRIGD)

.000162
.Q001141
.862120
-000129
.oG0tle
.J001<8
.0C01%0
J0C1Le?
02
-520:84
€231
-30329%
LQ0CI1e
200223
Q900221
.Jc0li

QUTER

INnER (WD)

80.0
8l.0
82.0
83.0
8<.0
85.0
8.2
87.9
88.0
8%.0
90.9
%l.0
2.0
3.0
9.¢
9%.0

.033992
.005109
00444y
.0080%0
.3098°3
.0119%0
.914398
L011093
.320088
.025378
.Gl6957
.030818
L3494
(539334
.043958
.04880¢

IRNER(28) INNER(3S)
.9cc00¢ L33000¢
-6oo000 .00000)
-000000 .000001}
.890000 .033001
.8a0¢co .eeocol
.000¢00 .000C0¢
.go0co0 .000021
.000000 .00000¢
.2000C0 [ k111
£ 300330 FETEEN
-3%00990 90091
. 300000 .000002
.300¢cQ .300002
.300239 .300892
. 100668 .Q30032
.J00800 .3%0002

DLOCKING PROBABILITIES FGR € » 160 A

ceo.s
.30831¢
L3009
1S

INMER (¢D)
-000201
.6000301
.83000)
. 000001

.333c0s2

INNER (4D
L00303¢
203000

LOAD OUTER INNER(28) INNER(3S)
80.0 -003992 300300 .000000
8l.0 .008109 .000000 .000000
82.0  .00e¢<$  .0GG0G0  .000000
93.0  .008630  .000200  .3000230
84.0 .009873 .000000 .9000C0
85.0  .011%%0  .000000  .300C30
46.0  .31429% .000¢00 .$00399
87.0  .017098  .000000 .000000
8.0  .370088  .0Q00000  .302000
2.0 .03378 .0080000 .900000
90.0  .024957 .300000 000630
$1.0 .030s.8 .060000 023530
2.0 .334948 .300000 .000000
3.0 L8393 .000000  .000000
95 0 L0308 .333050 08008
95,0  .0¢830¢  .000000  .002000

BLOCKING PRCBABILIY ES FOR C » 100 a

LOoAD OUTER  IMNER(29) INMER(IS)
$0.0 .005992 .000000 .000000
8.0 .005199 .000000 .903000
2.0 .006449 . 000000 .0C0000

.000000




$3.0 .008013 .800000 .08Q000 .000000
[ .00 .360000 -000000 .000000
85.0 ISR AL .40003¢ .9040800 .600000
8.0 .Oleles .000000 - 000000 .000080
82.0 L012093 .000000 .900000 .g00000
88.0 J23088 .9008000 .00Q000 .000040
8y. 0 glile .800000 .004%000Q .000000
9.0 SAees? .Q0c000 .00Q008 .330000
.2 .Sii8.8 .850000 .go0cee -Q0930
2.2 BTN ] .800030 .300000 .g60030
*.3 Lelels LIe8lee S33982% -g0o000
AT i+1-28 330300 -£00000 .9300230
s 2 FAY 1. 118 QLo .000008 .900800
YLOCKING PRCSABILITIES FOR C » 135 A7
SufER INNERIZS)) INNERILS) INNER (WD)
1239 L3318 .00%824 LAT8116 .064827
R .C028w4 L03977s L02399¢ .0se509
L3103 Saidt 062y Y RA .308x8e
1330 L8360t .33e08% L2876 370482
NE ] LG3e97h .93e842 L3I6082 L822401
13903 -33eG82 .0068200 27936 L92452
136.9 LR Y] La87087 .328.10 -07622¢
PR .33881!% .907316 L029276 .07809%1
138.3 LGiseB .307508 .33012Y L079%17
1099 LS12%e3 L5078y N-21:317) L3816
1:0.2 L3146 .GC9Ces .33178% L0843y
IR R .01e717 .o08308 .05258% .085118
112.9 L3192:50 .3C854S .33334% .C86742
3.9 219l .I6877% L3341l .o88212
PR} .Ll823 -528999 -03s8¢y .089823
149.2 Lelitls L2897 .988553 A SN
SLOCK (NG PROBABILITIES FOR C » {28 L J
L3aD CULTER INNER(28)  INMER(3S) INMER(42]).
18%.0 .90i %3 -00069%4 .004s3L Lo17927
i01.3 B F-TL L0007 .034083 .018e98
1352.¢0 L0327 .000774 . 004879 019565
193.9 .G044QT! .Gao8L? .365108 .020243
196.9 LeGe71 L0005 .005339 .a21aQ22
13%.0 .oceca2 .000902 .005%72 .021801
1682 L3376 .9009%-4 .06382s .a22%7%
ig?.0 .00881% .00098? .006038 .023344
i08.9 .010438 .001039 L00620 .224103
093 K 1TS1} .301072 .0046498 .02485¢
PR ] Sickls L301015 304724 .02558¢4
1id.8 L3ie257 IR .3069%4 L0630
1122 R R P FEINR 2 037164 .327000
i13.0 L3319 .9012°8 L8037 Q3767
116.3 S02¢R23 301277 .0075084 .028327
115.3 L3279384 .001318 .00778¢ .Q28978
2. 0CK1ING PROBABILITIES FOR C o 13§ 4

.2 -00198Y
161.90 L0284
192.9 .33321?
133.0 .006221)
1040 .004971
10%.0 .006CO0
154.3 L3078
1a7.0 .00885%
1¢8.9 .010698

.30006¢S
L000348
.30QC074
.390078
.000s8%
.000088
.200093
.3003%0
.800408

.000e0
.300e5?
.000898
L0007
.000780
.000821
.0008e¢
-000904
L0009

.0056a?
.0034¢<8
.00%082
.004200
L0064
.006403
.304097
.00%11i8
.00532¢

70

0y ¢ L0is3eS .000)08 .0009Y) .83%%:8
110.8 .0164354 .000113 .091033 .00874
.o 018717 .00011@ .00107% -80%9%0
112.0 019210 .000123 NIIRREY .000183
its3.0 L021943 .000128 001157 008351
116.8 .Ql6823 .0001353 .00119¢ .000846
115.0 027936 .000137 001235 .30e7:52
BLOCKING PROBABILITIES FOR C « 1S 4 o j0
L3AD OUTER  [MNNERIZS)  IMNER(IS)  Iame (4l
1909 L0018 .90203% 0000w .09055
1a1.9 LJG2844 .@03230s N-IT-1-r8) .J005%
Gr.0 -003237 .030C0S .C%007s .03CelS
105.0 L0002 .89Q00s acous! L333074
1%6.8 L00=971 .300004 50008 LG0T s
10%.2 .00e082 .903007 ER TR Set3l%e
i9¢.32 L3087 344 .8002307 202097 .320797
187 2 .0C8818 .9084007 S00103 socasy
08,9 o124l .000008 .002.0Y suta8]
10%.0 L012843 .00820%8 L8014 200924
11¢.¢ Q1ea34 .20080Y .e00120 audise
111.0 .016712 .000009 L0012 o158
112.0 .01%210 .233010 .500131 FERE-LS ]
1:3.90 -g2i1913 .360018 .00G137 3CicBe
1i1s.0 .3264823 .600011 Q00142 .301129
119.3 L337934 .0000112 .000i48 SCileB
BLOCKING PRCBABILITIES FOR C = 125 A e 1]
LCAD QUTER  INNERI(28) IWNNERLSIS)  [nnER(G2)
186.0 .oalree .200000 .00000s L3307
10).0 30284 .000300 .C00004 L336972
1352.9 .003217 .300000 .300006 .300077
1¢5.0 .306021 .300080 .$80027 .300¢u3
106.0 .304971 .900000 .000008 .000039
105.9 .30ec82 .00000¢ .03¢00¢C8 .004095
106.0 .007%66 .900:23 .30000Y Lde0181
102.¢ .000835 .0000830 .5o000Y .086187
108.2 .g10498 .00c09%0 .863010 .200813
13%.90 .B012348 .000021 .030010 .00011%
110.8 .0144l4 L0000} 903011 Sa3dile
111.9 L016712 .000001 .60Ca11 .g08}:2
n.e .019216 .90%001 .9000i2 .Q%0128
113.0 .g21918 .gagoal .800013 030188
114.9 L02¢823 .005001) .000013 .000150
118.9 027934 .063001 .000414 .030154

BLOCKIMG PROBABILITIES FOR C « 128 A 12

LOAQ QUTER INNER.JB)  INNERI3S)  (MNERIN2)
i00.0 .30118Y .000000 .99C1200 .90838504
2300 IR-Fhe T .podoog -300030 Lee?
8.9 L0 L9360 L8S3003 200338
103.9 .30422) .9gg0l0 .0C3003 .39e3¢
13¢.2 L9397y .gsecee .3000012 .26032Y
13%.2 .336082 .800390 .380001 .3C000y
104.9 .3073es .000030 .000C3aL L3333
107.0 .0Ce81y .80000 .300001 .goooll
109.9 L0134 .000000 . 3000014 .9003:12
109.0 012583 .200000 .200081 .d000ig
110.0 L0164 3¢ .800030 .90000! .ge00.:3
1i1.8 Lele7i7 .000000 .000001 .33001.
2.0 .019219 .900000 .000001 .003814
31200 ICREREY | .50%30 2801 .3000:9
11¢.0 32402 -330030 .00S001 .30301s



11%.0  .0279314  .000008  .000801  .000017
BLOCK ING PROBABILITIES FOR C » 125 4 » 1S
LOAD OUTER  [MNERIS) INNERUSS)  INMNER(G2)

120.0  .001989  .0000CO  .QJ0000  .0G0Q01

121.8 .Q0J%-4  .003%20 035300  .0C0001

(€2.9  .ecs1? 000820 000300  .000001

13820 03321 0.3%8:3 ©00230  .2300301

196.0 L0349l £22233 63c000  .900301

15,9 208092 .oties 0.23%0  .2GG00!

106.0 L0736 LCCGa00 LLLITL] .eQo02i

1s7.9 .ooes: ,300823  .038C00  .300Qd1

NI RS- Y- ] o €233 .acoast

L399 RFR2 13 SN IR sacse L9333

103,30 L3lesls scess 238036 .co000!

PR B TR Y A% 2NN LI L T} ces0d  .200801

12,0 Lsielie £¢003) 030063 .c00001

[EUE- I TS 1 sceoes geaica .g03cst

D.e.3 .2lc8ly sistse 33130 200061

13%.0 L3279 FEITE] 933COC . 200001

.388152
L0038¢4
R hYYS )
L3855 7¢
33050
-0078:3%
.3091462
.3.0981
S01229%
314097
L9LeCSY

.G32783
L38285¢
302987
LBSi3al
L9021eé
LS8
LS03ie7
YT Y
L0054

-01357%
31638
L1483
Lo14906
Vis=ls
215382
-31e33sS
-0lel82
17222
917854
.e18077

.04530¢
NIYEY]
_ds1298
. 0490382
.gesIRe
L3517
.0%2842
.05:808
TR T
.35e3Se

L957158

BLCTKING PROBABILIT, 5 FOR

LCAD GUTER
12%.0 .9031%2
2.0 .803844
127.9 .006448
128.0 L3058 7¢
1299 .008620
128.3 .907823

.3 .009i82
2.9 .010e51
153.3 Lo12398
L] L3e29?
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